Talk:POD Tutorial: Difference between revisions

From ArmadeusWiki
(New page: == Introduction == In this first tutorial, we will learn how to use POD with a simple example project for an APF9328 board. The project is described in figure 1. It is composed of 3 v...)
 
(Removing all content from page)
 
Line 1: Line 1:
== Introduction ==


In this first tutorial, we will learn how to use POD with a simple example project for an [[APF9328]] board.
The project is described in figure 1. It is composed of 3 virtual components:
*  '''blink''' : blink is the instance name of a led (virtual component) that can «blink» by simply writing a value in a register.
*  '''push''' : push is the instance name of a button (virtual component) that can generate an interrupt when pushed/released. The state of the button can be read in a register.
*  '''i2c''' : i2c is the instance name of the i2cocore virtual component (from OpenCores.org). This component is an i2c bus controller.
[[image:exemple-i2cledbutton.png|center|frame|400px|'''figure 1''' - ''Project example for tutorial'']]
== Installation ==
See [[POD installation guide]] to learn how to install it.
== POD ==
POD can be started by writing "pod" in the pod/bin/ directory. If you are under Windows ''python'' has to be written before:
<pre class="host">
$ python pod/bin/pod
POD>
</pre>
If you don't want to write the entire path each time, you can set your $PATH variable with the path of POD:
<source lang="bash">
export PATH=$PATH:"path_to_pod/pod/bin"
</source>
=== Playing with POD ===
POD is a console program composed of several environments described in figure 2.
[[image:podenvironment.png|center|frame|250px|'''figure 2''' - ''POD console architecture'']]
To enter in an environment, simply write its name from the parent environment.
<pre class="host">
POD> project
POD.project>
</pre>
For a complete list of the available commands type ''help''
<pre class="pod">
POD.project> help
Documented commands (type help <topic>):
========================================
EOF            create        help            listplatforms  setaddr 
addbusclock    delcomponent  history        load            setgeneric
addinstance    delconnection  info            ls              shell   
autoconnectbus  description    intercon        printxml        simulation
check          driver        listcomponents  quit            synthesis
closeproject    eof            listinstances  savehistory    top     
connectbus      exit          listinterfaces  saveproject 
connectpin      getmapping    listmasters    selectplatform
POD.project>
</pre>
A short description is although available for each command.
<pre class="pod">
POD.project> help listcomponents
listcomponents [componenttype]
        List components available in the library
       
POD.project>
</pre>
Command completion and argument completion can be done by using the <TAB> key :
<pre class="host">
POD.project> help list<TAB>
listcomponents  listinterfaces  listplatforms 
listinstances  listmasters 
POD.project> help list
</pre>
System commands can be used with «!» before:
<pre class="host">
POD.project> !echo "POD is really useful"
POD is really useful
POD.project>
</pre>
=== Project creation ===
[[image:exemple-empty.png|center|frame|400px|'''figure 3''' - ''Empty i2cledbutton-tutorial project'']]
To create a project, enter the ''create'' command in the ''project'' environment:
<pre style="host">
POD.project> create i2cledbutton-tutorial
Project i2cledbutton-tutorial created
POD.project:i2cledbutton-tutorial>
</pre>
The ''i2cledbutton-tutorial'' project is now created, you can save it
when you want, by typing ''saveproject''.
The target platform has to be selected by means of the ''selectplatform'' command :
<pre style="host">
POD.project:i2cledbutton-tutorial> selectplatform standard.apf9328
Component platform added as apf9328
Component imx9328_wb16_wrapper added as imx9328_wb16_wrapper00
Component rstgen_syscon added as rstgen_syscon00
Component irq_mngr added as irq_mngr00
setting base address 0x0 for  irq_mngr00.swb16
Platform apf9328 selected
POD.project:i2cledbutton-tutorial>
</pre>
By selecting this platform, several components will be automaticaly added by POD:
* '''imx9328_wb16_wrapper''': this component is used to convert the i.MX processor bus to the Wishbone (16bits data) bus.
* '''rstgen_syscon''' : this component manages the clock and the reset for the design.
* '''irq_mngr''' : this is a Wishbone16 slave which manages the interrupts generated by the other components and which propagates them to the processor.
[[image:exemple-platform.png|center|frame|400px|'''figure 4''' - ''Platform loaded with their default components'']]
=== Adding components ===
Components are organized by category in the library, to list the categories, use ''listcomponents'':
<pre style="host">
POD.project:i2cledbutton-tutorial> listcomponents
test  components  wrappers  syscons
POD.project:i2cledbutton-tutorial>
</pre>
And to list the components under a category use ''listcomponents'' again with the category name in parameter:
<pre style="host">
POD.project:i2cledbutton-tutorial> listcomponents components
i2cocore  c38a_control  ledsensor  led  simplegpio  uart16550  irq_mngr  button
POD.project:i2cledbutton-tutorial>
</pre>
Three components will be loaded with the command ''addinstances'':
<pre style="host">
POD.project:i2cledbutton-tutorial> help addinstance
addinstance <componenttype>.<componentname>.[componentversion] [newinstancename]
        Add component in project
</pre>
The second parameter is used to give the instance name of the component in the project.
<pre style="host">
POD.project:i2cledbutton-tutorial> addinstance components.button push
Component button added as push
POD.project:i2cledbutton-tutorial> addinstance components.led.wb16 blink
Component led added as blink
POD.project:i2cledbutton-tutorial> addinstance components.i2cocore.wb16 i2c
Component i2cocore added as i2c
</pre>
Note: some components like the led may have several versions depending on the Wishbone bus size for example.
[[image:exemple-components.png|center|frame|400px|'''figure 4''' - ''Components loaded'']]
=== Internal pin connections ===
''push'' and ''i2c'' components have output pins to generate interrupts. These pins have
to be connected to the interrupt manager "irq_mngr00".
[[image:exemple-intconnection.png|center|frame|400px|'''figure 5''' - ''Internal interrupts connections'']]
A complete description of an instance in the project can be displayed with the ''info'' command:
<pre style="host">
POD.project:i2cledbutton-tutorial> info i2c
Component name :i2c
Instance  name :i2cocore
description : A simple button ip
->Generics
            id : 1
        wb_size : 16
->Interfaces
irq            :
    inta_o          s1
candr          :
    rst_i          s1
    clk_i          s1
i2c            :
    scl            s1
    sda            s1
swb16            Base address:0x0
    adr_i          s4
    dat_i          s16
    dat_o          s16
    we_i            s1
    stb_i          s1
    ack_o          s1
    cyc_i          s1
POD.project:i2cledbutton-tutorial>
</pre>
This command gives the interfaces, the ports and the size of the ports (s1, s16, ...). We want to
connect the interrupt port pin number 0, named '''inta_o''' and part of the '''irq'''
interface, to the ''irq_mngr00''.
<pre style="host">
POD.project:i2cledbutton-tutorial> info irq_mngr00
Component name :irq_mngr00
Instance  name :irq_mngr
description : Manage interruptions.
->Generics
            id : 1
      irq_level : '1'
      irq_count : 1
->Interfaces
candr          :
    gls_clk        s1
    gls_reset      s1
swb16            Base address:0x0
    wbs_s1_address  s2
    wbs_s1_readdata s16
    wbs_s1_writedata s16
    wbs_s1_ack      s1
    wbs_s1_strobe  s1
    wbs_s1_cycle    s1
    wbs_s1_write    s1
irq            :
    irqport        s16
ext_irq        :
    gls_irq        s1
        pin 0: -> apf9328.fpga.TIM1.0
</pre>
The targeted port in the irq_mngr is '''irqport''' part of the '''irq''' interface. To establish the connection, the ''connectpin'' command will be used:
<pre style="host">
POD.project:i2cledbutton-tutorial> connectpin irq_mngr00.irq.irqport.0 i2c.irq.inta_o.0
pin connected
</pre>
Same thing for the push button :
<pre style="host">
POD.project:i2cledbutton-tutorial> connectpin irq_mngr00.irq.irqport.1 push.int_button.irq.0
pin connected
</pre>
The ''info'' command can be used to verify that the connection is correctly performed:
<pre style="host">
POD.project:i2cledbutton-tutorial> info irq_mngr00
Component name :irq_mngr00
Instance  name :irq_mngr
description : Manage interruptions.
->Generics
            id : 1
      irq_level : '1'
      irq_count : 2
->Interfaces
candr          :
    gls_clk        s1
    gls_reset      s1
swb16            Base address:0x0
    wbs_s1_address  s2
    wbs_s1_readdata s16
    wbs_s1_writedata s16
    wbs_s1_ack      s1
    wbs_s1_strobe  s1
    wbs_s1_cycle    s1
    wbs_s1_write    s1
irq            :
    irqport        s16
        pin 0: -> i2c.irq.inta_o.0
        pin 1: -> push.int_button.irq.0
ext_irq        :
    gls_irq        s1
        pin 0: -> apf9328.fpga.TIM1.0
</pre>
=== External pin connections ===
Connecting an external pin is done the same way as for an internal pin by giving the name of the platform in place of the instance name. In the '''apf9328''' platform, the pin name
can be found in FPGA schematic [http://www.armadeus.com/_downloads/apf9328/hardware/apf_schema.pdf] (page 13).
The name of the interface is '''fpga''' for the apf9328. In this example we will connect the button, the led and the i2c to the APF9328DevFull connector X7 (figure 6).
[[image:devfullX7.png|center|frame|400px|'''figure 5''' - ''X7 connector'']]
We just have to connect the pins as following :
<pre style="host">
POD.project:i2cledbutton-tutorial> connectpin apf9328.fpga.IO_L01N_0 push.int_button.button.0
pin connected
POD.project:i2cledbutton-tutorial> connectpin i2c.i2c.sda apf9328.fpga.IO_L32N_0
pin connected
POD.project:i2cledbutton-tutorial> connectpin i2c.i2c.scl apf9328.fpga.IO_L01P_0
pin connected
POD.project:i2cledbutton-tutorial> connectpin blink.int_led.led.0 apf9328.fpga.IO_L32P_0
pin connected
</pre>
[[image:exemple-extconnection.png|center|frame|400px|'''figure 6''' - ''external connections'']]
=== Bus and clock connections ===
* '''Bus'''
[[image:exemple-busconnection.png|center|frame|400px|'''figure 7''' - ''Wishbone bus connections'']]
To connect a bus, the master bus interface is used as first argument of the ''connectbus'' command, the second argument being the slave bus interface:
<pre style="host">
POD.project:i2cledbutton-tutorial> connectbus imx9328_wb16_wrapper00.mwb16 blink.swb16
Bus connected
POD.project:i2cledbutton-tutorial> connectbus imx9328_wb16_wrapper00.mwb16 push.swb16
Bus connected
POD.project:i2cledbutton-tutorial> connectbus imx9328_wb16_wrapper00.mwb16 i2c.swb16
Bus connected
</pre>
* '''clock'''
[[image:exemple-clockconnection.png|center|frame|400px|'''figure 8''' - ''Syscon connection'']]
The bus interconection (Intercon) need to be synchronized with a clock and reset generator. This can be done by means of the ''addbusclock'' command.
<pre style="host">
POD.project:i2cledbutton-tutorial> addbusclock rstgen_syscon00.candr imx9328_wb16_wrapper00.mwb16
Connected
</pre>
* '''autoconnect'''
Bus and clock connections can be automaticaly performed with the ''autoconnect'' command. This command works only for "classical" architectures and with recognized buses.
<pre style="host">
POD.project:i2cledbutton-tutorial> autoconnectbus
</pre>
=== Intercon generation ===
Once the connections done, the Intercon component has to be generated. The Intercon is a component
responsible for decoding the addresses and for routing the Wishbone bus signals.
<pre style="host">
POD.project:i2cledbutton-tutorial> intercon imx9328_wb16_wrapper00.mwb16
</pre>
[[image:exemple-intercon.png|center|frame|400px|'''figure 8''' - ''Intercon'']]
=== Top generation ===
[[image:exemple-top.png|center|frame|400px|'''figure 9''' - ''Top'']]
The Top component is the component responsible for connecting the non Wishbone signals in the FPGA. The Top can be generated with the ''top'' command
<pre style="host">
POD.project:i2cledbutton-tutorial> top
Top generated with name : top_i2cledbutton-tutorial.vhd
</pre>
== Synthesis ==
In the '''apf9328''' platform, the FPGA is a Spartan3 from Xilinx. This means that the synthesis of the project can only be done with ISE. Fortunately, Xilinx provides the ISE
Webpack freely on its website [http://www.xilinx.com/ise/logic_design_prod/webpack.htm].
POD has to generate a project that ISE can understand. This can be accomplished from the synthesis environment :
<pre style="host">
POD.project:i2cledbutton-tutorial> synthesis
POD.project.synthesis>
</pre>
Then the tool used for the synthesis has to be specified with the ''selecttoolchain'' command:
<pre style="host">
POD.project.synthesis> selecttoolchain ise
</pre>
After that we can generate an ISE project with the ''generateproject'' command.
<pre style="host">
POD.project:i2cledbutton-tutorial.synthesis> selecttoolchain ise
POD.project:i2cledbutton-tutorial.synthesis> generateproject
Make directory for imx9328_wb16_wrapper
Make directory for rstgen_syscon
Make directory for irq_mngr
Make directory for led
Make directory for button
Make directory for i2cocore
Make directory for imx9328_wb16_wrapper00_mwb16
Constraint file generated with name :~/pod/tests/i2cledbutton-tutorial/synthesis/i2cledbutton-tutorial.ucf
TCL script generated with name : i2cledbutton-tutorial.tcl
</pre>
As you can see, POD generates although a TCL script that can be executed by ISE. This script eases the synthesis process.
[[image:exemple-ise.png|center|frame|400px|'''figure 10''' - ''Bitstream generation with ISE Webpack'']]
In the Tcl tab ('''1'''), change the default directory to the synthesis directory ('''2'''), find the tcl script you want to execute ('''3''', under Windows type ''dir'' instead of ''ls'') and start it with the ''source'' command ('''4''').
The resulting bitstream (binary FPGA synthetized code) ''top_i2cledbutton.bit'' can be found in the ''i2cledbutton_tutorial/objs'' directory.
== Simulation ==
If a simulation is required, POD can generate a template for the whole project. To do this, enter in the simulation environment :
<pre style="host">
POD.project:i2cledbutton_tutorial> simulation
POD.project:i2cledbutton_tutorial.simulation>
</pre>
To generate the testbench and the makefile use the command:
<pre style="host">
POD.project:i2cledbutton_tutorial.simulation> generateproject
Testbench with name : /home/fabien/projectpod/software/pod/tests/i2cledbutton_tutorial/simulation/top_i2cledbutton_tutorial_tb.vhd Done
Makefile generated with name : /home/fabien/projectpod/software/pod/tests/i2cledbutton_tutorial/simulation/Makefile Done
</pre>
Now, you just have to modify the ''top_i2cledbutton_tutorial_tb.vhd'' file to add your own tests
under the ''stimulis'' process.
<pre style="host">
stimulis : process
begin
-- write stimulis here
wait for 10 us;
assert false report "End of test" severity error;
end process stimulis;
</pre>
You can then start the simulation with ''make ghdl-simu'' and launch ''make ghdl-view'' to
view the generated chronograms with gtkwave.
== Drivers ==
Numbers of components have a driver template for different operating systems. POD can
fill these templates with the informations contained in the project.
From the driver environment,
<pre style="host">
POD.project:i2cledbutton_tutorial> driver
POD.project:i2cledbutton_tutorial.driver>
</pre>
choose the targeted platform:
<pre style="host">
POD.project:i2cledbutton_tutorial.driver> selecttoolchain armadeus
</pre>
And generate the driver project :
<pre style="host">
POD.project:i2cledbutton_tutorial.driver> generateproject
No driver for imx9328_wb16_wrapper
No driver for rstgen_syscon
Create directory for irq_mngr driver
Create directory for button driver
Create directory for led driver
Create directory for i2cocore driver
No driver for imx9328_wb16_wrapper00_mwb16
Copy and fill template for irq_mngr
Copy and fill template for button
Copy and fill template for led
Copy and fill template for i2cocore
</pre>
Drivers are generated and can be found in the ''i2cledbutton_tutorial/drivers/'' directory.
POD can copy this drivers to the right place in the software development tree. Select the path with ''selectprojecttree'' then copy the files with ''copydrivers'':
<pre style="host">
POD.project:i2cledbutton_tutorial.driver> selectprojecttree ~/armadeus/target/linux/modules/fpga/POD
POD.project:i2cledbutton_tutorial.driver> copydrivers
</pre>
To compile the drivers, go to your ''armadeus/'' directory then type ''make linux26-menuconfig''. The drivers generated by POD are located in ''Device Drivers - Armadeus specific drivers - FPGA drivers '' (see figure 11).
[[image:exemple-linuxmenuconfig.png|center|frame|400px|'''figure 11''' - ''Linux menuconfig'']]
<pre style="host">
$ make linux-menuconfig
$ make
</pre>
[[Category:POD]]

Latest revision as of 18:12, 18 January 2013