APF6 SP The full howto: Difference between revisions
| (129 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
[[Category: APF6]] | [[Category: APF6]] | ||
[[Category: APF6_SP]] | |||
[[Category: FPGA]] | [[Category: FPGA]] | ||
[[Category: CycloneV]] | [[Category: CycloneV]] | ||
[[Category: Quartus]] | |||
[[Category: Qsys]] | |||
= Introduction = | == Introduction == | ||
This is the full howto | This is the full howto make an APF6_SP CycloneV example design which uses : | ||
* PCIe | * PCIe | ||
* DDR3 | * DDR3 | ||
* LED | * General Purpose Input/Outputs | ||
* Button | ** LED | ||
** Button | |||
This howto is designed for : | This howto is designed for : | ||
* APF6D_SP-M1GE4G-4m-BW-C4M384: APF6_SP Dual with CycloneV C4 (speed C8) and two DDR3 chips | * [[APF6_SP|APF6D_SP-M1GE4G-4m-BW-C4M384]]: APF6_SP Dual with CycloneV C4 (speed C8) and two DDR3 chips | ||
* Quartus | * Quartus with following versions: | ||
** '''Quartus 17.0.0''' : Quartus 17 without update | |||
** '''Quartus 19.1''' : Quartus Intel version | |||
** To install Quartus see [[Quartus_installation_on_Linux | this page]]. | |||
[[File:APF6_SP_full_howto.png|frame|center|The full design for this howto]] | [[File:APF6_SP_full_howto.png|frame|center|The full design for this howto]] | ||
= | = Make the quartus project = | ||
* Open the "New Project Wizard" in Quartus | |||
* Select a directory for the design, for example ''/home/your_name/workspace'' and a project name ''apf6_the_full_howto'': | |||
* Then Choose ''Empty Project'' and don't add any file yet -> press "Next" | |||
* Select the part number : '''5CGXFC4C7U19C8''' -> press "Next" -> "Next" -> "Finish" | |||
* Right click on "Cyclone V -> Devices..." in project navigator and click on '''Device and Pin Options''' | |||
* in '''CvP Settings''' set this options: | |||
** Configuration via Protocol: '''Core initialization and update''' | |||
* then select "OK" two times | |||
= Make the Qsys project = | |||
* Open the | * Open Qsys/Platform designer: | ||
* | ** With Quartus 17: '''Tools'''->'''Qsys''' | ||
** With Quartus 19.1: '''Tools'''->'''Platform designer''' | |||
* Delete the component '''clk_0''' then save the Qsys project as : '''qsys_tfht.qsys''' | |||
* Click on '''Finish''' and generate the component with all options left by default | |||
* Under Quartus project add the Qsys project (don't forget to click on '''add''' after selected here). | |||
[[File:tfht_add_qsys_project.png|frame|center|How to add a file in project]] | |||
* Right click on ''qsys_tfht.qsys'' and '''set as Top-Level Entity''' | |||
* Relaunch Qsys by double-clicking on the file in "Project Navigator" | |||
== Adding the PCIe and CvP == | |||
* In '''IP Catalog''' select the component: | |||
<pre class="config"> | |||
Library | |||
Interface Protocols | |||
PCI Express | |||
Avalon-MM Cyclone V Hard IP for PCI Express | |||
Avalon-MM Cyclone V Hard IP for PCI Express Intel FPGA IP <- 19.1 | |||
</pre> | |||
* "Add" it to design. | |||
* PCIe configuration: | |||
** Number of Lanes: '''x1''' | |||
** Reference clock frequency: '''125Mhz''' | |||
** check '''Use 62.5 MHz application clock''' | |||
** check ''' Enable configuration via the PCIe link''' | |||
** BAR0: 32-bit non-prefetchable memory | |||
** BAR1: 32-bit non-prefetchable memory | |||
** BAR2: 32-bit non-prefetchable memory | |||
** Vendor ID: '''0x00001172''' | |||
** Device ID: '''0x0000e001''' | |||
** Class Code: '''0x00001300''': there is a bug in quartus, the actual class code is here '''13''' | |||
* click on "Finish" | |||
* Export these signals with name in '''bold''' (right click in "Hierarchy", then choose "Connections" and "Export as:..."). Exported signals will be accessible on top of module: | |||
** refclk : '''refclk''' | |||
** npor: '''npor''' | |||
** hip_serial: '''hip_serial''' | |||
* connect '''Rxm_BAR0''' on '''Cra''' (always right click in "Hierarchy", then "Connections"...) | |||
* Add CvP component reconfig driver, with all default parameters: | |||
<pre class="config"> | |||
Library | |||
Interface Protocols | |||
PCI Express | |||
Altera PCIe Reconfig Driver | |||
Altera PCIe Reconfig Driver Intel FPGA IP <- 19.1 | |||
</pre> | |||
* Connect previous IP signals with: | |||
** '''coreclkout''' -> '''reconfig_xcvr_clk''' | |||
** '''coreclkout''' -> '''pld_clk''' | |||
** '''nreset_status''' -> '''reconfig_xcvr_rst''' | |||
* Add CvP component transceiver, with all default parameters: | |||
<pre class="config"> | |||
Library | |||
Interface Protocols | |||
Transceiver PHY | |||
Transceiver Reconfiguration Controller | |||
Transceiver Reconfiguration Controller Intel FPGA IP <- 19.1 | |||
</pre> | |||
* Connect previous PCIe IP signals with: | |||
** '''coreclkout''' -> '''mgmt_clk_clk''' | |||
** '''nreset_status''' -> '''mgmt_rst_reset''' | |||
** reconfig_driver.'''reconfig_mgmt''' -> '''reconfig_mgmt''' | |||
** reconfig_driver.'''reconfig_busy''' -> '''reconfig_busy''' | |||
** pci.'''reconfig_to_xcvr''' -> '''reconfig_to_xcvr''' | |||
** pci.'''reconfig_from_xcvr''' -> '''reconfig_from_xcvr''' | |||
* you should end up with the following wiring: | |||
[[File:APF6_tfht_pcie_wiring.png|frame|center|Wiring result after PCIe configured]] | |||
== Adding the DDR3 == | |||
{{Note| If not indicated, parameters should be left to default one !}} | |||
=== UniPHY controller === | |||
* In the IP catalog, select: | |||
<pre class="config"> | <pre class="config"> | ||
Library | |||
Memory Interfaces and Controllers | |||
Memory Interfaces with UniPHY | |||
DDR3 SDRAM Controller with UniPHY | |||
DDR3 SDRAM Controller with UniPHY Intel FPGA IP <- 19.1 | |||
</pre> | </pre> | ||
== Adding the PCIe and CvP == | * Select checkbox '''Enable Hard External Memory Interface''' | ||
* In tab '''PHY Settings''' configure: | |||
** Speed Grade: '''8''' | |||
** Memory clock frequency: '''375Mhz''' | |||
** PLL reference clock frequency: '''62.5Mhz''' | |||
** Rate on Avalon-MM interface: '''Full''' | |||
** supply Voltage: '''1.35V DDR3L''' | |||
* In tab '''Memory Parameters''' | |||
** In "Presets" (right of the window) select: '''JEDEC DDR3-1G6 2GB X8''' and apply | |||
** Memory device speed grade: '''400Mhz''' | |||
** Total interface width: '''24''' | |||
** Row address width: '''14''' | |||
* In tab '''Controller Settings''' | |||
** checkbox: '''Generate power-of-2 data bus widths for Qsys or SOPC Builder''' | |||
** checkbox: '''Enable Configuration and Status Register Interface''' (Internal JTAG) | |||
** checkbox: '''Enable Error Detection and Correction Logic''' | |||
* Click on ''Finish'' | |||
* Connect following signals: | |||
** '''coreclkout''' -> '''pll_ref_clk''' | |||
** '''coreclkout''' -> '''mp_cmd_clk_0''' | |||
** '''coreclkout''' -> '''mp_rfifo_clk_0''' | |||
** '''coreclkout''' -> '''mp_wfifo_clk_0''' | |||
** '''coreclkout''' -> '''csr_clk''' | |||
** '''nreset_status''' -> '''global_reset''' | |||
** '''nreset_status''' -> '''soft_reset''' | |||
** '''nreset_status''' -> '''mp_cmd_reset_n_0''' | |||
** '''nreset_status''' -> '''mp_rfifo_reset_n_0''' | |||
** '''nreset_status''' -> '''mp_wfifo_reset_n_0''' | |||
** '''nreset_status''' -> '''csr_reset_n''' | |||
=== Span extender === | |||
DDR3 memory is to large for PCIe BAR domain. Then we have to use a [https://documentation.altera.com/#/00030683-AA$NT00064780 span extender] to adapt PCIe BAR domain to DDR3 domain. | |||
* Select span expander in IP Library: | |||
<pre class="config"> | |||
Library | |||
Basic Functions | |||
Bridges and Adaptors | |||
Memory Mapped | |||
Address Span Extender | |||
</pre> | |||
* Configure it with these options: | |||
** Datapath Width: '''64bits''' | |||
** Slave Word Address Width: '''20bits''' | |||
** press "Finish" | |||
* Connect following PCIe IP signals to extender one: | |||
** '''coreclckout''' -> '''clock''' | |||
** '''nreset_status''' -> '''reset''' | |||
** '''Rxm_BAR0''' -> '''cntl''' | |||
*** Change base address of cntl to '''0x0000_4000''' | |||
** '''Rxm_BAR1''' -> '''windowed_slave''' | |||
* And following extender signals to DDR3 one: | |||
** '''expanded_master''' -> mem_if_ddr3_emif_0.'''avl_0''' | |||
== Adding the button and LED (PIO) == | |||
Documentation of the PIO component can be found [https://www.altera.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/nios2/n2cpu_nii51007.pdf here]. | |||
* In IP Library select: | |||
<pre class="config"> | |||
Library | |||
Processors and Peripherals | |||
Peripherals | |||
PIO (Parallel I/O) | |||
PIO (Parallel I/O) Intel FPGA IP <- 19.1 | |||
</pre> | |||
* Configure it with these options: | |||
** Width: '''2''' | |||
** Direction: '''Bidir''' | |||
** checkbox '''Synchronously capture''' | |||
** Edge Type: '''RISING''' | |||
** checkbox '''Generate IRQ''' | |||
** IRQ Type: '''EDGE''' | |||
* click on "Finish" | |||
* export ''pio.external_connection'' to '''pio''' | |||
* Connect following signals: | |||
** '''coreclkout''' -> '''pio_0.clk''' | |||
** '''nreset_status''' -> '''pio_0.reset''' | |||
** '''Rxm_BAR2''' -> '''pio_0.s1''' | |||
** '''pio_0.irq''' -> '''Rxmirq''' | |||
== Qsys component schematic == | |||
The resulting schematics should give the figure below. | |||
[[File:apf6_tfht_pcieddr_sch.png|frame|center| The full connections in qsys component]] | |||
Now click on '''finish''' and generate the component with all default parameters kept. | |||
= Generate bitstream with Quartus = | |||
* Make a first synthesis, in ''Task'' window, right click on ''Analysis & Synthesis'' then choose ''Start'' | |||
<pre class="config"> | |||
Compile Design | |||
+ Analysis & Synthesis | |||
</pre> | |||
{{Note| If you have a synthesis error here with 19.1 be sure that you are using your [[Quartus_installation_on_Linux#Perl_Getopt::Long | perl distribution]].}} | |||
== Pinout == | |||
* PCIe | |||
** Outside Quartus, create a file named '''pcie_pinout.tcl'' and edit it with your favorite text editor. | |||
** Copy all lines from [[APF6_SP_DDR3_PINOUT#PCIe| here]]. | |||
** Save your file, then add it to the project inside Quartus | |||
** Run the script with following menu, select it then '''run''': | |||
<pre class="config"> | |||
Tools | |||
TCL Scripts ... | |||
</pre> | |||
* DDR3 | |||
** Create a file named '''ddr3_pinout.tcl''' and edit it. | |||
** Copy all lines from [[APF6_SP_DDR3_PINOUT#DDR3| here]] ('''Pinout placement''' and '''Technology pinout'''). | |||
** Save then add the file to project | |||
** Run the script with following menu, select it then '''run''': | |||
<pre class="config"> | |||
Tools | |||
TCL Scripts ... | |||
</pre> | |||
* Button & Led | |||
** Open the pinplanner by double-click in '''tasks''': | |||
<pre class="config"> | |||
Compile Design | |||
Analysis & Synthesis | |||
I/O Assignment Analysis | |||
Pin Planner | |||
</pre> | |||
** For button '''pio_export[0]''' select Location column and set it to : '''PIN_L9''' | |||
** For led '''pio_export[1]''' select Location column and set it to : '''PIN_M10''' | |||
** Close the Pin Planner | |||
== Synthesis, Place & route == | |||
* Right click on ''Analysis and Synthesis'' then '''Start''' | |||
* Open a Linux console terminal then go to your project directory and type this: | |||
<pre class="host"> | |||
$ cd ~/tmp/apf6_the_full_howto | |||
$ find . -name "*_p0_pin_map.tcl" | xargs sed -iolt "/_mem_if_ddr3_emif_0_p0_get_input_clk_id {/a return \$pll_output_node_id" | |||
</pre> | |||
{{Note| This is the [[DDR3-CycloneV_interface_description#The_DDR3_clock_hack | DDR3 clock hack]], each time synthesis is relaunched, this shell line must be relaunch}} | |||
* Right click on ''Assembler (Generate programming files)'' then '''Start''' | |||
* Convert bitstream to rbf with menu: | |||
<pre class="config"> | |||
File | |||
Convert Programming Files... | |||
</pre> | |||
* set these options: | |||
** Programming file type: '''Raw Binary File (.rbf)''' | |||
** Change the name to : '''output_files/tfht.rbf''' | |||
** Select '''SOF Data''' in '''Input files to convert''' then click on '''Add File...''' | |||
** add the file '''apf6_the_full_howto.sof''' in directory ''output_files'' | |||
** checkbox '''Create CvP files (Generate tfht.periph.rbf and tfht.core.rbf)''' | |||
** click on '''Generate''' | |||
* These files should be present on directory '''output_files''': | |||
<pre class="host"> | |||
ls -l tmp/apf6_the_full_howto/output_files/*.rbf | |||
tmp/apf6_the_full_howto/output_files/tfht.core.rbf | |||
tmp/apf6_the_full_howto/output_files/tfht.periph.rbf | |||
</pre> | |||
{{Note| These bitstreams can be found under armadeus distribution in directory `firmware/tfht/bitstreams` }} | |||
= Linux BSP configuration = | |||
{{Note| This is not an Armadeus BSP tutorial, the BSP is supposed to be installed and compiled according to this [[Toolchain| explains]]}} | |||
* Get a compiled BSP with following configuration : '''apf6_defconfig''' | |||
* Add [[Pci_debug| PCI debug]] package with '''make menuconfig''' | |||
<pre class="config"> | |||
Target packages ---> | |||
Hardware handling ---> | |||
[*] pcidebug | |||
</pre> | |||
{{Note | On current Armadeus BSP, pcidebug is already installed by default}} | |||
* Then make the binaries and [[Target_Software_Installation |flash it]] on the apf6_sp. | |||
* Adding the rbf file to your [[Communicate_with_your_board_from_a_Linux_Host_(Basics)#TFTP_server | tftpboot]] directory. | |||
<pre class="host"> | |||
$ cp -v output_files/tfht.*.rbf /tftpboot/ | |||
‘output_files/tfht.core.rbf’ -> ‘/tftpboot/tfht.core.rbf’ | |||
‘output_files/tfht.periph.rbf’ -> ‘/tftpboot/tfht.periph.rbf’ | |||
</pre> | |||
{{Note| Refer to [[PCIe FPGA loading]] to understand FPGA configuration with PCIe}} | |||
* In U-Boot download the periph.rbf and configure FPGA (don't forget to configure your tftp server ip): | |||
<pre class="apf"> | |||
BIOS> tftpboot ${loadaddr} 192.168.0.214:tfht.periph.rbf | |||
BIOS> fpga load 0 ${loadaddr} ${filesize} | |||
</pre> | |||
* Boot Linux | |||
<pre class="apf"> | |||
BIOS> boot | |||
... | |||
apf6 login: root | |||
</pre> | |||
* The three BARx should be seen with '''lspci''' command : | |||
<pre class="apf"> | |||
# lspci -v -s 01:00.0 | |||
01:00.0 Unclassified device [0013]: Altera Corporation Device e001 (rev 01) | |||
Flags: fast devsel, IRQ 341 | |||
Memory at 01800000 (32-bit, non-prefetchable) [disabled] [size=32K] | |||
Memory at 01000000 (32-bit, non-prefetchable) [disabled] [size=8M] | |||
Memory at 01808000 (32-bit, non-prefetchable) [disabled] [size=32] | |||
Capabilities: [50] MSI: Enable- Count=1/4 Maskable- 64bit+ | |||
Capabilities: [78] Power Management version 3 | |||
Capabilities: [80] Express Endpoint, MSI 00 | |||
Capabilities: [100] Virtual Channel | |||
Capabilities: [200] Vendor Specific Information: ID=1172 Rev=0 Len=044 <?> | |||
</pre> | |||
* Configure network: | |||
<pre class="apf"> | |||
$ udhcpc | |||
</pre> | |||
* Download core: | |||
<pre class="apf"> | |||
$ tftp -g -r tfht.core.rbf 192.168.0.214 | |||
</pre> | |||
* Load the core bitstream: | |||
<pre class="apf"> | |||
$ load_fpga tfht.core.rbf | |||
Altera CvP 0000:01:00.0: enabling device (0140 -> 0142) | |||
Altera CvP 0000:01:00.0: Found and enabled PCI device with VID 0x1172, DID 0xE001 | |||
successfully init Altera CVP with major 248 | |||
Altera CvP 0000:01:00.0: Now starting CvP... | |||
Altera CvP 0000:01:00.0: CvP successful, application layer now ready | |||
8212+1 records in | |||
8212+1 records out | |||
</pre> | |||
== User access to FPGA == | |||
=== DDR3 === | |||
* DDR3 is accessible via the BAR1, connect to BAR1: | |||
<pre class="apf"> | |||
$ pci_debug -s 01:00.0 -b1 | |||
</pre> | |||
* Read first values of DDR3: | |||
<pre class="apf"> | |||
PCI> d32 0 20 | |||
00000000: AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA | |||
00000010: 55555555 55555555 55555555 55555555 | |||
</pre> | |||
* Write values, then read back: | |||
<pre class="apf"> | |||
PCI> c32 0 CAFEDECA | |||
PCI> c32 8 CACABEBE | |||
PCI> d32 0 20 | |||
00000000: CAFEDECA AAAAAAAA CACABEBE AAAAAAAA | |||
00000010: 55555555 55555555 55555555 55555555 | |||
</pre> | |||
* Exit pci_debug | |||
<pre class="apf"> | |||
PCI> quit | |||
</pre> | |||
Only first 8MB (0x800000) are accessible for the moment, to access next 8MB, the span extender must be configured on BAR0. | |||
* Access BAR0 and configure [https://documentation.altera.com/#/00030683-AA$NT00064780 span extender]: | |||
<pre class="apf"> | |||
$ pci_debug -s 01:00.0 -b0 | |||
</pre> | |||
* Read the span extender windows value at address 0x4000: | |||
<pre class="apf"> | |||
PCI> d32 4000 1 | |||
00004000: 00000000 | |||
</pre> | |||
* Write the new required value : | |||
<pre class="apf"> | |||
PCI> c32 4000 800000 | |||
PCI> d32 4000 1 | |||
00004000: 00800000 | |||
</pre> | |||
* Quit: | |||
<pre class="apf"> | |||
PCI> quit | |||
</pre> | |||
* then reconnect pci_debug to change for bar1: | |||
<pre class="apf"> | |||
$ pci_debug -s 01:00.0 -b1 | |||
</pre> | |||
* Read value : | |||
<pre class="apf"> | |||
PCI> d32 0 20 | |||
00000000: 6B2171EA DFA5DA76 6CFB3F47 7AF9F526 | |||
00000010: DBD85BAB 7F56CF7A 78FAD73B ECF997FE | |||
</pre> | |||
* Write some values: | |||
<pre class="apf"> | |||
PCI> c32 0 12345678 | |||
PCI> c32 4 9ABCDEF0 | |||
PCI> c32 10 12345678 | |||
PCI> c32 14 9ABCDEF0 | |||
PCI> d32 0 20 | |||
00000000: 12345678 9ABCDEF0 6CFB3F47 7AF9F526 | |||
00000010: 12345678 9ABCDEF0 78FAD73B ECF997FE | |||
</pre> | |||
* Etc... | |||
=== PIO (Button and led) === | |||
As seen on the first schematic of this tutorial, the [https://documentation.altera.com/#/00081203-NT$NT00080322 PIO] is plugged on the BAR2 of the PCIe. | |||
* Then first, connect to BAR2 with pci_debug: | |||
<pre class="apf"> | |||
$ pci_debug -s 01:00.0 -b2 | |||
</pre> | |||
'''Button''' | |||
* Read all PIO registers: | |||
<pre class="apf"> | |||
PCI> d32 0 8 | |||
00000000: 00000001 00000000 | |||
</pre> | |||
* Leave button pressed and read again: | |||
<pre class="apf"> | |||
PCI> d32 0 8 | |||
00000000: 00000000 00000000 | |||
</pre> | |||
'''led''' | |||
* set PIO[1] (led) as output: | |||
<pre class="apf"> | |||
PCI> c32 4 2 | |||
</pre> | |||
* Turn on led | |||
<pre class="apf"> | |||
PCI> c32 0 2 | |||
</pre> | |||
* Turn off led: | |||
<pre class="apf"> | |||
PCI> c32 0 0 | |||
</pre> | |||
= Conclusion = | |||
This tutorial should give you the basics to use the CycloneV soldered on the APF6_SP module. Now you should know: | |||
* PCIe: | |||
** How to instanciate the CycloneV hard IP | |||
** How to read/write data with it from Linux with simple access | |||
* DDR3: | |||
** How to instanciate and configure the UniPHY hard IP | |||
** How to connect it to PCIe | |||
** How to read/write simple data | |||
* Simple I/O: | |||
** How to instanciate a simple port for I/O under Qsys | |||
** How to drive it from Linux | |||
Some subjects '''are not covered by''' this tutorial: | |||
* Managing PCIe interrupts | |||
* Write a Linux driver | |||
* Increase data bandwidth with PCIe-DMA (up to 140MB/s) | |||
** From the FPGA to the i.MX6 | |||
** From the i.MX6 to the FPGA | |||
* Create a custom Qsys component | |||
* Using Serializer/Deserializer | |||
* And more ... | |||
If you are interested in a specific subject, please contact [http://www.opossom.com/english/contact.html Armadeus System] they should do somethings for you. | |||
= Links & Resources= | |||
* [http://www.armadeus.com/_downloads/apf6_SP/hardware/apf6_the_full_howto.zip The full archive of quartus 15.1.1 project](zip) | |||
Latest revision as of 14:56, 12 November 2019
Introduction
This is the full howto make an APF6_SP CycloneV example design which uses :
- PCIe
- DDR3
- General Purpose Input/Outputs
- LED
- Button
This howto is designed for :
- APF6D_SP-M1GE4G-4m-BW-C4M384: APF6_SP Dual with CycloneV C4 (speed C8) and two DDR3 chips
- Quartus with following versions:
- Quartus 17.0.0 : Quartus 17 without update
- Quartus 19.1 : Quartus Intel version
- To install Quartus see this page.
Make the quartus project
- Open the "New Project Wizard" in Quartus
- Select a directory for the design, for example /home/your_name/workspace and a project name apf6_the_full_howto:
- Then Choose Empty Project and don't add any file yet -> press "Next"
- Select the part number : 5CGXFC4C7U19C8 -> press "Next" -> "Next" -> "Finish"
- Right click on "Cyclone V -> Devices..." in project navigator and click on Device and Pin Options
- in CvP Settings set this options:
- Configuration via Protocol: Core initialization and update
- then select "OK" two times
Make the Qsys project
- Open Qsys/Platform designer:
- With Quartus 17: Tools->Qsys
- With Quartus 19.1: Tools->Platform designer
- Delete the component clk_0 then save the Qsys project as : qsys_tfht.qsys
- Click on Finish and generate the component with all options left by default
- Under Quartus project add the Qsys project (don't forget to click on add after selected here).
- Right click on qsys_tfht.qsys and set as Top-Level Entity
- Relaunch Qsys by double-clicking on the file in "Project Navigator"
Adding the PCIe and CvP
- In IP Catalog select the component:
Library
Interface Protocols
PCI Express
Avalon-MM Cyclone V Hard IP for PCI Express
Avalon-MM Cyclone V Hard IP for PCI Express Intel FPGA IP <- 19.1
- "Add" it to design.
- PCIe configuration:
- Number of Lanes: x1
- Reference clock frequency: 125Mhz
- check Use 62.5 MHz application clock
- check Enable configuration via the PCIe link
- BAR0: 32-bit non-prefetchable memory
- BAR1: 32-bit non-prefetchable memory
- BAR2: 32-bit non-prefetchable memory
- Vendor ID: 0x00001172
- Device ID: 0x0000e001
- Class Code: 0x00001300: there is a bug in quartus, the actual class code is here 13
- click on "Finish"
- Export these signals with name in bold (right click in "Hierarchy", then choose "Connections" and "Export as:..."). Exported signals will be accessible on top of module:
- refclk : refclk
- npor: npor
- hip_serial: hip_serial
- connect Rxm_BAR0 on Cra (always right click in "Hierarchy", then "Connections"...)
- Add CvP component reconfig driver, with all default parameters:
Library
Interface Protocols
PCI Express
Altera PCIe Reconfig Driver
Altera PCIe Reconfig Driver Intel FPGA IP <- 19.1
- Connect previous IP signals with:
- coreclkout -> reconfig_xcvr_clk
- coreclkout -> pld_clk
- nreset_status -> reconfig_xcvr_rst
- Add CvP component transceiver, with all default parameters:
Library
Interface Protocols
Transceiver PHY
Transceiver Reconfiguration Controller
Transceiver Reconfiguration Controller Intel FPGA IP <- 19.1
- Connect previous PCIe IP signals with:
- coreclkout -> mgmt_clk_clk
- nreset_status -> mgmt_rst_reset
- reconfig_driver.reconfig_mgmt -> reconfig_mgmt
- reconfig_driver.reconfig_busy -> reconfig_busy
- pci.reconfig_to_xcvr -> reconfig_to_xcvr
- pci.reconfig_from_xcvr -> reconfig_from_xcvr
- you should end up with the following wiring:
Adding the DDR3
UniPHY controller
- In the IP catalog, select:
Library
Memory Interfaces and Controllers
Memory Interfaces with UniPHY
DDR3 SDRAM Controller with UniPHY
DDR3 SDRAM Controller with UniPHY Intel FPGA IP <- 19.1
- Select checkbox Enable Hard External Memory Interface
- In tab PHY Settings configure:
- Speed Grade: 8
- Memory clock frequency: 375Mhz
- PLL reference clock frequency: 62.5Mhz
- Rate on Avalon-MM interface: Full
- supply Voltage: 1.35V DDR3L
- In tab Memory Parameters
- In "Presets" (right of the window) select: JEDEC DDR3-1G6 2GB X8 and apply
- Memory device speed grade: 400Mhz
- Total interface width: 24
- Row address width: 14
- In tab Controller Settings
- checkbox: Generate power-of-2 data bus widths for Qsys or SOPC Builder
- checkbox: Enable Configuration and Status Register Interface (Internal JTAG)
- checkbox: Enable Error Detection and Correction Logic
- Click on Finish
- Connect following signals:
- coreclkout -> pll_ref_clk
- coreclkout -> mp_cmd_clk_0
- coreclkout -> mp_rfifo_clk_0
- coreclkout -> mp_wfifo_clk_0
- coreclkout -> csr_clk
- nreset_status -> global_reset
- nreset_status -> soft_reset
- nreset_status -> mp_cmd_reset_n_0
- nreset_status -> mp_rfifo_reset_n_0
- nreset_status -> mp_wfifo_reset_n_0
- nreset_status -> csr_reset_n
Span extender
DDR3 memory is to large for PCIe BAR domain. Then we have to use a span extender to adapt PCIe BAR domain to DDR3 domain.
- Select span expander in IP Library:
Library
Basic Functions
Bridges and Adaptors
Memory Mapped
Address Span Extender
- Configure it with these options:
- Datapath Width: 64bits
- Slave Word Address Width: 20bits
- press "Finish"
- Connect following PCIe IP signals to extender one:
- coreclckout -> clock
- nreset_status -> reset
- Rxm_BAR0 -> cntl
- Change base address of cntl to 0x0000_4000
- Rxm_BAR1 -> windowed_slave
- And following extender signals to DDR3 one:
- expanded_master -> mem_if_ddr3_emif_0.avl_0
Adding the button and LED (PIO)
Documentation of the PIO component can be found here.
- In IP Library select:
Library
Processors and Peripherals
Peripherals
PIO (Parallel I/O)
PIO (Parallel I/O) Intel FPGA IP <- 19.1
- Configure it with these options:
- Width: 2
- Direction: Bidir
- checkbox Synchronously capture
- Edge Type: RISING
- checkbox Generate IRQ
- IRQ Type: EDGE
- click on "Finish"
- export pio.external_connection to pio
- Connect following signals:
- coreclkout -> pio_0.clk
- nreset_status -> pio_0.reset
- Rxm_BAR2 -> pio_0.s1
- pio_0.irq -> Rxmirq
Qsys component schematic
The resulting schematics should give the figure below.
Now click on finish and generate the component with all default parameters kept.
Generate bitstream with Quartus
- Make a first synthesis, in Task window, right click on Analysis & Synthesis then choose Start
Compile Design
+ Analysis & Synthesis
| Note: If you have a synthesis error here with 19.1 be sure that you are using your perl distribution. |
Pinout
- PCIe
- Outside Quartus, create a file named 'pcie_pinout.tcl and edit it with your favorite text editor.
- Copy all lines from here.
- Save your file, then add it to the project inside Quartus
- Run the script with following menu, select it then run:
Tools
TCL Scripts ...
- DDR3
- Create a file named ddr3_pinout.tcl and edit it.
- Copy all lines from here (Pinout placement and Technology pinout).
- Save then add the file to project
- Run the script with following menu, select it then run:
Tools
TCL Scripts ...
- Button & Led
- Open the pinplanner by double-click in tasks:
Compile Design
Analysis & Synthesis
I/O Assignment Analysis
Pin Planner
- For button pio_export[0] select Location column and set it to : PIN_L9
- For led pio_export[1] select Location column and set it to : PIN_M10
- Close the Pin Planner
Synthesis, Place & route
- Right click on Analysis and Synthesis then Start
- Open a Linux console terminal then go to your project directory and type this:
$ cd ~/tmp/apf6_the_full_howto
$ find . -name "*_p0_pin_map.tcl" | xargs sed -iolt "/_mem_if_ddr3_emif_0_p0_get_input_clk_id {/a return \$pll_output_node_id"
| Note: This is the DDR3 clock hack, each time synthesis is relaunched, this shell line must be relaunch |
- Right click on Assembler (Generate programming files) then Start
- Convert bitstream to rbf with menu:
File Convert Programming Files...
- set these options:
- Programming file type: Raw Binary File (.rbf)
- Change the name to : output_files/tfht.rbf
- Select SOF Data in Input files to convert then click on Add File...
- add the file apf6_the_full_howto.sof in directory output_files
- checkbox Create CvP files (Generate tfht.periph.rbf and tfht.core.rbf)
- click on Generate
- These files should be present on directory output_files:
ls -l tmp/apf6_the_full_howto/output_files/*.rbf tmp/apf6_the_full_howto/output_files/tfht.core.rbf tmp/apf6_the_full_howto/output_files/tfht.periph.rbf
| Note: These bitstreams can be found under armadeus distribution in directory `firmware/tfht/bitstreams` |
Linux BSP configuration
| Note: This is not an Armadeus BSP tutorial, the BSP is supposed to be installed and compiled according to this explains |
- Get a compiled BSP with following configuration : apf6_defconfig
- Add PCI debug package with make menuconfig
Target packages --->
Hardware handling --->
[*] pcidebug
$ cp -v output_files/tfht.*.rbf /tftpboot/ ‘output_files/tfht.core.rbf’ -> ‘/tftpboot/tfht.core.rbf’ ‘output_files/tfht.periph.rbf’ -> ‘/tftpboot/tfht.periph.rbf’
| Note: Refer to PCIe FPGA loading to understand FPGA configuration with PCIe |
- In U-Boot download the periph.rbf and configure FPGA (don't forget to configure your tftp server ip):
BIOS> tftpboot ${loadaddr} 192.168.0.214:tfht.periph.rbf
BIOS> fpga load 0 ${loadaddr} ${filesize}
- Boot Linux
BIOS> boot ... apf6 login: root
- The three BARx should be seen with lspci command :
# lspci -v -s 01:00.0
01:00.0 Unclassified device [0013]: Altera Corporation Device e001 (rev 01)
Flags: fast devsel, IRQ 341
Memory at 01800000 (32-bit, non-prefetchable) [disabled] [size=32K]
Memory at 01000000 (32-bit, non-prefetchable) [disabled] [size=8M]
Memory at 01808000 (32-bit, non-prefetchable) [disabled] [size=32]
Capabilities: [50] MSI: Enable- Count=1/4 Maskable- 64bit+
Capabilities: [78] Power Management version 3
Capabilities: [80] Express Endpoint, MSI 00
Capabilities: [100] Virtual Channel
Capabilities: [200] Vendor Specific Information: ID=1172 Rev=0 Len=044 <?>
- Configure network:
$ udhcpc
- Download core:
$ tftp -g -r tfht.core.rbf 192.168.0.214
- Load the core bitstream:
$ load_fpga tfht.core.rbf Altera CvP 0000:01:00.0: enabling device (0140 -> 0142) Altera CvP 0000:01:00.0: Found and enabled PCI device with VID 0x1172, DID 0xE001 successfully init Altera CVP with major 248 Altera CvP 0000:01:00.0: Now starting CvP... Altera CvP 0000:01:00.0: CvP successful, application layer now ready 8212+1 records in 8212+1 records out
User access to FPGA
DDR3
- DDR3 is accessible via the BAR1, connect to BAR1:
$ pci_debug -s 01:00.0 -b1
- Read first values of DDR3:
PCI> d32 0 20 00000000: AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA 00000010: 55555555 55555555 55555555 55555555
- Write values, then read back:
PCI> c32 0 CAFEDECA PCI> c32 8 CACABEBE PCI> d32 0 20 00000000: CAFEDECA AAAAAAAA CACABEBE AAAAAAAA 00000010: 55555555 55555555 55555555 55555555
- Exit pci_debug
PCI> quit
Only first 8MB (0x800000) are accessible for the moment, to access next 8MB, the span extender must be configured on BAR0.
- Access BAR0 and configure span extender:
$ pci_debug -s 01:00.0 -b0
- Read the span extender windows value at address 0x4000:
PCI> d32 4000 1 00004000: 00000000
- Write the new required value :
PCI> c32 4000 800000 PCI> d32 4000 1 00004000: 00800000
- Quit:
PCI> quit
- then reconnect pci_debug to change for bar1:
$ pci_debug -s 01:00.0 -b1
- Read value :
PCI> d32 0 20 00000000: 6B2171EA DFA5DA76 6CFB3F47 7AF9F526 00000010: DBD85BAB 7F56CF7A 78FAD73B ECF997FE
- Write some values:
PCI> c32 0 12345678 PCI> c32 4 9ABCDEF0 PCI> c32 10 12345678 PCI> c32 14 9ABCDEF0 PCI> d32 0 20 00000000: 12345678 9ABCDEF0 6CFB3F47 7AF9F526 00000010: 12345678 9ABCDEF0 78FAD73B ECF997FE
- Etc...
PIO (Button and led)
As seen on the first schematic of this tutorial, the PIO is plugged on the BAR2 of the PCIe.
- Then first, connect to BAR2 with pci_debug:
$ pci_debug -s 01:00.0 -b2
Button
- Read all PIO registers:
PCI> d32 0 8 00000000: 00000001 00000000
- Leave button pressed and read again:
PCI> d32 0 8 00000000: 00000000 00000000
led
- set PIO[1] (led) as output:
PCI> c32 4 2
- Turn on led
PCI> c32 0 2
- Turn off led:
PCI> c32 0 0
Conclusion
This tutorial should give you the basics to use the CycloneV soldered on the APF6_SP module. Now you should know:
- PCIe:
- How to instanciate the CycloneV hard IP
- How to read/write data with it from Linux with simple access
- DDR3:
- How to instanciate and configure the UniPHY hard IP
- How to connect it to PCIe
- How to read/write simple data
- Simple I/O:
- How to instanciate a simple port for I/O under Qsys
- How to drive it from Linux
Some subjects are not covered by this tutorial:
- Managing PCIe interrupts
- Write a Linux driver
- Increase data bandwidth with PCIe-DMA (up to 140MB/s)
- From the FPGA to the i.MX6
- From the i.MX6 to the FPGA
- Create a custom Qsys component
- Using Serializer/Deserializer
- And more ...
If you are interested in a specific subject, please contact Armadeus System they should do somethings for you.



